Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Front Vet Sci ; 9: 911026, 2022.
Article in English | MEDLINE | ID: covidwho-2148130

ABSTRACT

To provide students of veterinary medicine with the necessary day 1 competences, e-learning offerings are increasingly used in addition to classical teaching formats such as lectures. For example, virtual patients offer the possibility of case-based, computer-assisted learning. A concept to teach and test clinical decision-making is the key feature (KF) approach. KF questions consist of three to five critical points that are crucial for the case resolution. In the current study usage, learning success, usability and acceptance of KF cases as neurological virtual patients should be determined in comparison to the long cases format. Elective courses were offered in winter term 2019/20 and summer term 2020 and a total of 38 virtual patients with neurological diseases were presented in the KF format. Eight cases were provided with a new clinical decision-making application (Clinical Reasoning Tool) and contrasted with eight other cases without the tool. In addition to the evaluation of the learning analytics (e.g., processing times, success rates), an evaluation took place after course completion. After 229 course participations (168 individual students and additional 61 with repeated participation), 199 evaluation sheets were completed. The average processing time of a long case was 53 min, while that of a KF case 17 min. 78% of the long cases and 73% of KF cases were successfully completed. The average processing time of cases with Clinical Reasoning Tool was 19 min. The success rate was 58.3 vs. 60.3% for cases without the tool. In the survey, the long cases received a ranking (1 = very good, 6 = poor) of 2.4, while KF cases received a grade of 1.6, 134 of the respondents confirmed that the casework made them feel better prepared to secure a diagnosis in a real patient. Flexibility in learning (n = 93) and practical relevance (n = 65) were the most frequently listed positive aspects. Since KF cases are short and highlight only the most important features of a patient, 30% (n = 70) of respondents expressed the desire for more specialist information. KF cases are suitable for presenting a wide range of diseases and for training students' clinical decision-making skills. The Clinical Reasoning Tool can be used for better structuring and visualizing the reasoning process.

2.
Frontiers in veterinary science ; 8, 2021.
Article in English | EuropePMC | ID: covidwho-1602332

ABSTRACT

Case-based learning is a valuable tool to impart various problem-solving skills in veterinary education and stimulate active learning. Students can solve imaginary cases without the need for contact with real patients. Case-based teaching can be well performed as asynchronous remote-online class. In time of the COVID-19-pandemic, many courses in veterinary education are provided online. Therefore, students report certain fatigue when it comes to desk-based online learning. The app “Actionbound” provides a platform to design digitally interactive scavenger hunts based on global positioning system (GPS)—called “bounds” —in which the teacher can create a case study with an authentic patient via narrative elements. This app was designed for multimedia-guided museum or city tours initially. The app offers the opportunity to send the students to different geographic localizations for example in a park or locations on the University campus, like geocaching. In this way, students can walk outdoors while solving the case study. The present article describes the first experience with Actionbound as a tool for mobile game-based and case-orientated learning in veterinary education. Three veterinary neurology cases were designed as bounds for undergraduate students. In the summer term 2020, 42 students from the second to the fourth year of the University of Veterinary Medicine Hannover worked on these three cases, which were solved 88 times in total: Cases 1 and 2 were each played 30 times, and case 3 was played 28 times. Forty-seven bounds were solved from students walking through the forest with GPS, and 41 were managed indoors. After each bound, students evaluated the app and the course via a 6-point numerical Likert rating scale (1 = excellent to 6 = unsatisfactory). Students playing the bounds outdoors performed significantly better than students solving the corresponding bound at home in two of the three cases (p = 0.01). The large majority of the students rated the course as excellent to good (median 1.35, range 1–4) and would recommend the course to friends (median 1.26, range 1–3). Summarizing, in teaching veterinary neurology Actionbound's game-based character in the context of outdoor activity motivates students, might improve learning, and is highly suitable for case-based learning.

SELECTION OF CITATIONS
SEARCH DETAIL